286^2=(2w-4)w

Simple and best practice solution for 286^2=(2w-4)w equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 286^2=(2w-4)w equation:



286^2=(2w-4)w
We move all terms to the left:
286^2-((2w-4)w)=0
We add all the numbers together, and all the variables
-((2w-4)w)+81796=0
We calculate terms in parentheses: -((2w-4)w), so:
(2w-4)w
We multiply parentheses
2w^2-4w
Back to the equation:
-(2w^2-4w)
We get rid of parentheses
-2w^2+4w+81796=0
a = -2; b = 4; c = +81796;
Δ = b2-4ac
Δ = 42-4·(-2)·81796
Δ = 654384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{654384}=\sqrt{16*40899}=\sqrt{16}*\sqrt{40899}=4\sqrt{40899}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{40899}}{2*-2}=\frac{-4-4\sqrt{40899}}{-4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{40899}}{2*-2}=\frac{-4+4\sqrt{40899}}{-4} $

See similar equations:

| 15x−2=4x−13 | | 7(4w+4)/2=3 | | (3y+84)+(5y-16)=180 | | 2t-16=t+1 | | 3(x+3)=4x+3 | | 2a=4a+18 | | 5(x+8)=66 | | 2/3x+14/3=6 | | 7t-24=4t | | x+40=600 | | 3x-x=x+4-2x | | X=22-2y | | 2z+18=10z-70 | | 5y-94=y+94 | | 8=7x-7x | | 2/5x+15x=x-6 | | 2x2-21x-7=4 | | x(x-1)(x+1)=720 | | 8(4s+5)=200 | | 2a-35=4a-89 | | 2(2l+7)=50 | | -107=-4(1+5x)-3 | | 2x-92+2x-52=180 | | 6x+144=42 | | -107=-4(1+5x-3 | | 17+x=15+x | | -8x2-3x-1=5 | | (x)(5000/x)=5000 | | 3=(10+z)/(-5) | | -25+y=-54 | | Y^2+5y=-6 | | 6=n/6 |

Equations solver categories